
International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

The Affection of HTTP Compression in the
Performance of Core web Components

Khushali Tirghoda

Abstract— HTTP compression addresses some of the performance problems of the Web by attempting to reduce the size of resources

transferred between a server and client thereby conserving bandwidth and reducing user perceived latency.Currently, most modern

browsers and web servers support some form of content compression. Additionally, a number of browsers are able to perform streaming

decompression of gzipped content. Despite this existing support for HTTP compression, it remains an underutilized feature of the Web

today. This can perhaps be explained, in part, by the fact that there currently exists little proxy support for the Vary header, which is

necessary for a proxy cache to correctly store and handle compressed content.To demonstrate some of the quantitative benefits of

compression, I conducted a test to determine the potential byte savings for a number of popular web sites.

 Index Terms HTTP Compression Comparison, Compression Ratio Measurements, Apache Web Server Performance

——————————  ——————————

1 INTRODUCTION

User perceived latency is one of the main performance
problems plaguing the World Wide Web today. At one point
or another every Internet user has experienced just how pain-
fully slow the ―World Wide Wait‖ can be. As a result, there
has been a great deal of research and development focused on
improving Web performance.

Currently there exist a number of techniques designed to
bring content closer to the end user in the hopes of conserving
bandwidth and reducing user perceived latency, among other
things. Such techniques include prefetching, caching and con-
tent delivery networks. However, one area that seems to have
drawn only a modest amount of attention involves HTTP
compression.

Many Web resources, such as HTML, JavaScript, CSS and
XML documents, are simply ASCII text files. Given the fact that
such files often contain many repeated sequences of identical
information they are ideal candidates for compression. Other
resources, such as JPEG and GIF images and streaming audio
and video files, are precompressed and hence would not benefit
from further compression. As such, when dealing with HTTP
compression, focus is typically limited to text resources, which
stand to gain the most byte savings from compression.

Encoding schemes for such text resources must provide loss-
less data compression. As the name implies, a lossless data
compression algorithm is one that can recreate the original data,
bit-for-bit, from a compressed file. One can easily imagine how
the loss or alteration of a single bit in an HTML file could affect
its meaning.

The goal of HTTP compression is to reduce the size of certain
resources that are transferred between a server and client. By
reducing the size of web resources, compression can make more

efficient use of network bandwidth. Compressed content can
also provide monetary savings for those individuals who pay a
fee based on the amount of bandwidth they consume. More
importantly, though, since fewer bytes are transmitted, clients
would typically receive the resource in less time than if it had
been sent uncompressed. This is especially true for narrowband
clients. Modems typically present what is referred to as the
weakest link or longest mile in a data transfer; hence methods to
reduce download times are especially pertinent to these users.

Furthermore, compression can potentially alleviate some of
the burden imposed by the TCP slow start phase. The TCP slow
start phase is a means of controlling the amount of congestion
on a network. It works by forcing a small initial congestion
window on each new TCP connection thereby limiting the
number of maximum-size packets that can initially be transmit-
ted by the sender [2]. Upon the reception of an ACK packet, the
sender’s congestion window is increased. This continues until a
packet is lost, at which point the size of the congestion window
is decreased [2]. This process of increasing and decreasing the
congestion window continues throughout the connection in
order to constantly maintain an appropriate transmission rate
[2]. In this way, a new TCP connection avoids overburdening a
network with large bursts of data. Due to this slow start phase,
the first few packets that are transferred on a connection are
relatively more expensive than subsequent ones. Also, one can
imagine that for the transfer of small files, a connection may not
reach its maximum transfer rate because the transfer may reach
completion before it has the chance to get out of the TCP slow
start phase. So, by compressing a resource, more data effectively
fits into each packet. This in turns results in fewer packets being
transferred thereby lessening the effects of slow start (reducing
the number of server stalls) [4, 6, 14, 3].

In the case where an HTML document is sent in a com-
pressed format, it is probable that the first few packets of data
will contain more HTML code and hence a greater number of
inline image references than if the same document had been
sent uncompressed. As a result, the client can subsequently is-
sue requests for these embedded resources quicker hence easing
some of the slow start burden. Also, inline objects are likely to

————————————————

 Khushali is currently working as Assistant Professor in MCA Department
at IITE,Ahmedabad,India

 E-mail: Tirghoda_khushali@yahoo.co.in

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

be on the same server as this HTML document. Therefore an
HTTP/1.1 compliant browser may be able to pipeline these re-
quests onto the same TCP connection [6]. Thus, not only does
the client receive the HTML file in less time he/she is also able
to expedite the process of requesting embedded resources [6,
14].

Currently, most modern browsers and web servers support

some form of content compression. Additionally, a number of
browsers are able to perform streaming decompression of
gzipped content. This means that, for instance, such a browser
could decompress and parse a gzipped HTML file as each suc-
cessive packet of data arrives rather than having to wait for the
entire file to be retrieved before decompressing. Despite all of
the aforementioned benefits and the existing support for HTTP
compression, it remains an underutilized feature of the Web
today.

2 POPULAR COMPRESSION SCHEMES

Although, there exists many different lossless compression
algorithms today, most are variations of two popular schemes:
Huffman encoding and the Lempel-Ziv algorithm.
Huffman encoding works by assigning a binary code to each
of the symbols (characters) in an input stream (file). This is
accomplished by first building a binary tree of symbols based
on their frequency of occurrence in a file. The assignment of
binary codes to symbols is done in such a way that the most
frequently occurring symbols are assigned the shortest binary
codes and the least frequently occurring symbols assigned the
longest codes. This in turn creates a smaller compressed file
[7].
The Lempel–Ziv algorithm, also known as LZ-77, exploits the
redundant nature of data to provide compression. The algo-
rithm utilizes what is referred to as a sliding window to keep
track of the last n bytes of data seen. Each time a phrase is en-
countered that exists in the sliding window buffer, it is re-
placed with a pointer to the starting position of the previously
occurring phrase in the sliding window along with the length
of the phrase [7].
The main metric for data compression algorithms is the com-
pression ratio, which refers to the ratio of the size of the origi-
nal data to the size of the compressed data [13]. For example, if
we had a 100 kilobyte file and were able to compress it down
to only 20 kilobytes we would say the compression ratio is 5-
to-1, or 80%. The contents of a file, particularly the redundan-
cy and orderliness of the data, can strongly affect the compres-
sion ratio.

3 PROXY SUPPORT FOR COMPRESSION

Currently one of the main problems with HTTP compression
is the lack of proxy cache support. Many proxies cannot han-
dle the Content-Encoding header and hence simply forward
the response to the client without caching the resource. As was
mentioned above, IIS attempts to ensure compressed docu-
ments are not served stale by setting the Expires time in the
past. Caching was handled in HTTP/1.0 by storing and
retrieving resources based on the URI [2]. This, of course,

proves inadequate when multiple versions of the same re-
source exist - in this case, a compressed and uncompressed
representation. This problem was addressed in HTTP/1.1
with the inclusion of the Vary response header. A cache could
then store both a compressed and uncompressed version of
the same object and use the Vary header to distinguish be-
tween the two. The Vary header is used to indicate which re-
sponse headers should be analyzed in order to determine the
appropriate variant of the cached resource to return to the
client [2].

4 RELATED WORK

In [1], Mogul et al. quantified the potential benefits of delta
encoding and data compression for HTTP by analyzing lives
traces from Digital Equipment Corporation (DEC) and an
AT&T Research Lab. The traces were filtered in an attempt to
remove requests for precompressed content; for example, ref-
erences to GIF, JPEG and MPEG files. The authors then esti-
mated the time and byte savings that could have been
achieved had the HTTP responses to the clients been delta
encoded and/or compressed. The authors determined that in
the case of the DEC trace, of the 2465 MB of data analyzed, 965
MB, or approximately 39%, could have been saved had the
content been gzip compressed. For the AT&T trace, 1054MB,
or approximately 17%, of the total 6216 MB of data could have
been saved. Furthermore, retrieval times could have been re-
duced 22% and 14% in the DEC and AT&T traces, respective-
ly. The authors remarked that they felt their results demon-
strated a significant potential improvement in response size
and response delay as a result of delta encoding and compres-
sion.
In [8], the authors attempted to determine the performance
benefits of HTTP compression by simulating a realistic work-
load environment. This was done by setting up a web server
and replicating the CNN site on this machine. The authors
then accessed the replicated CNN main page and ten subsec-
tions within this page (i.e. World News, Weather, etc), empty-
ing the cache before each test. Analysis of the total time to load
all of these pages showed that when accessing the site on a
28.8 kbps modem, gzip content coding resulted in 30% faster
page loads. They also experienced 35% faster page loads when
using a 14.4 kbps modem.
Finally, in [3] the authors attempted to determine the perfor-
mance effects of HTTP/1.1. Their tests included an analysis of
the benefits of HTTP compression via the deflate content-
coding. The authors created a test web site that combined data
from the Netscape and Microsoft home pages into a page
called ―MicroScape‖. The HTML for this new page totaled 42
KB with 42 inline GIF images totaling 125 KB. Three different
network environments were used to perform the test: a Local
Area Network (high bandwidth, low latency), a Wide Area
Network (high bandwidth, high latency) and a 28.8 kbps
modem (low bandwidth, high latency). The test involved mea-
suring the time required for the client to retrieve the Micro-
scape web page from the server, parse, and, if necessary, de-
compress the HTML file on-the-fly and retrieve the 42 inline
images. The results showed significant improvements for

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

those clients on low bandwidth and/or high latency connec-
tions. In fact, looking at the results from the entire test envi-
ronments, compression reduced the total number of packets
transferred by 16% and the download time for the first time
retrieval of the page by 12%.

5 EXPERIMENTS

We will now analyze the results from a number of tests that
were performed in order to determine the potential benefits
and drawbacks of HTTP compression.
5.1 Compression Ratio Measurements

The first test that was conducted was designed to provide a
basic idea of the compression ratio that could be achieved by
compressing some of the more popular sites on the Web. The
objective was to determine how many fewer bytes would need
to be transferred across the Internet if web pages were sent to
the client in a compressed form. To determine this I first found
a web page, [15], that ranks the Top 99 sites on the Web based
on the number of unique visitors. Although the rankings had
not been updated since March 2001 most of the indicated sites
are still fairly popular. Besides, the intent was not to find a
definitive list of the most popular sites but rather to get a
general idea of some of the more highly visited ones. A freely
available program called wget [16] was used to retrieve pages
from the Web and Perl scripts were written to parse these files
and extract relevant information.
The steps involved in carrying out this test consisted of first
fetching the web page containing the list of Top 99 web sites.
This HTML file was then parsed in order to extract all of the
URLs for the Top 99 sites. A pre-existing CGI program [17] on
the Web that allows a user to submit a URL for analysis was
then utilized. The program determines whether or not the
indicated site utilizes gzip compression and, if not, how many
bytes could have been saved were the site to implement
compression. These byte savings are calculated for all 10 levels
of gzip encoding. Level 0 corresponds to no gzip encoding.
Level 1 encoding uses the least aggressive form of phrase
matching but is also the fastest, as it uses the least amount of
CPU time when compared to the other levels, excluding level
0. Alternatively, level 9 encoding performs the most
aggressive form of pattern matching but also takes the longest,
utilizing the most CPU resources [13].
A Perl script was employed to parse the HTML file returned
by this CGI program, with all of the relevant information
being dumped to a file that could be easily imported into a
spreadsheet. Unfortunately, the CGI program can only
determine the byte savings for the HTML file. While this
information is useful it does not give the user an idea of the
compression ratio for the entire page - including the images
and other embedded resources. Therefore, I set my web
browser to go through a proxy cache and subsequently
retrieved each of the top 99 web pages. We then used the trace
log from the proxy to determine the total size of all of the web
pages. After filtering out the web sites that could not be
handled by the CGI program, wget or Perl scripts I was left
with 77 URLs. One of the problems encountered by the CGI

program and wget involved the handling of server redirection
replies. Also, a number of the URLs referenced sites that either
no longer existed or were inaccessible at the time the tests
were run.
The results of this experiment were encouraging. First, if we
consider the savings for the HTML document alone, the
average compression ratio for level 1 gzip encoding turns out
to be 74% and for level 9 this figure is 78%. This clearly shows
that HTML files are prime candidates for compression. Next,
we factor into the equation the size of all of the embedded
resources for each web page. We will refer to this as the total
compression ratio and define it as the ratio of the size of the
original page, which includes the embedded resources and the
uncompressed HTML, to the size of the encoded page, which
includes the embedded resources and the compressed HTML.
 The results show that the average total compression
ratio comes to about 27% for level 1 encoding and 29% for
level 9 encoding. This still represents a significant amount of
savings, especially in the case where the content is being
served to a modem user.

Fig.1 – The total page size (including HTML and embedded
resources) for the top ten web sites.

Fig. 1 shows the difference in the total number of bytes
transferred in an uncompressed web page versus those
transferred with level 1 and level 9 gzip compression. Note the
small difference in compression ratios between level 1 and
level 9 encoding.
Table 1 shows a comparison of the total compression ratios for
the top ten web sites. You can see that there is only a slight
difference in the total compression ratios for levels 1 and 9 of
gzip encoding. Thus, if a site administrator were to decide to

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

enable gzip compression on a web server but wanted to
devote the least amount of CPU cycles as possible to the
compression process, he/she could set the encoding to level 1
and still maintain favorable byte savings.

Table 1.
Comparison of the total compression ratios of level 1 and

level 9 gzip encoding for the indicated URLs

URL Level 1 Level 9

www.yahoo.com 36.353 38.222

www.aol.com 26.436 25.697

www.msn.com 35.465 37.624

www.microsoft.com 38.850 40.189

www.passport.com 25.193 26.544

www.geocities.com 43.316 45.129

www.ebay.com 29.030 30.446

www.lycos.com 40.170 42.058

www.amazon.com 31.334 32.755

www.angelfire.com 34.537 36.427

Ultimately, what these results show is that, on average, a

compression-enabled server could send approximately 27%

less bytes yet still transmit the exact same web page to sup-

porting clients. Despite this potential savings, out of all of the

URLs examined, www.excite.com was the only site that sup-

ported gzip content coding. This is indicative of HTTP com-

pression’s current popularity, or lack thereof.

5.2 Web Server Performance Test

Number footnotes separately in superscripts (Insert | Foot-

note)1. Place the actual footnote at the bottom of the column in

which it is cited; do not put footnotes in the reference list

(endnotes). Use letters for table footnotes (see Table 1). Please

do not include footnotes in the abstract and avoid using a

footnote in the first column of the article. This will cause it to

appear of the affiliation box, making the layout look confus-

ing.

The tests were designed to determine the maximum

throughput of the two servers by issuing a series of requests

for compressed and uncompressed documents. Using Auto-

bench I was able to start by issuing a low rate of requests per

second to the server and then increase this rate by a specified

step until a high rate of requests per second were attempted to

be issued. An example of the command line options used to

run some of the tests is as follows:

 ./autobench_gzip_on --low_rate 10 --

 high_rate 150 --rate_step 10 --

 single_host --host1 192.168.0.106 --

 num_conn 1000 --num_call 1 --output_fmt

 csv --quiet --timeout 10 --uri1

 /google.html --file google_compr.csv

 These command line options indicate that initially re-

quests for the google.html file will be issued at a rate of 10

requests per second. Requests will continue at this rate until

1It is recommended that footnotes be avoided (except for the unnumbered
footnote with the receipt date on the first page). Instead, try to integrate the
footnote information into the text.

1000 connections have been made. For these tests each connec-

tion makes only one call. In other words no persistent connec-

tions were used. The rate of requests is then increased by the

rate step, which is 10. So, now 20 requests will be attempted

per second until 1000 connections have been made. This will

continue until a rate of 150 requests per second is attempted.

when looking at the results that the client may not be capable

of issuing 150 requests per second to the server. Thus a dis-

tinction is made between the desired and actual number of

requests per second.

6 APACHE PERFORMANCE BENCHMARK

We will first take a look at the results of the tests when run

against the Apache server. Fig. 2 & Fig. 3 represent graphs of

some of the results from respective test cases.

Fig. 2 – Benchmarking results for the retrieval of the Google

HTML file from the Apache Server.

Fig. 3 – Benchmarking results for the retrieval of the Yahoo

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 5

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

HTML file from the Apache Server.

Referring to the graphs, we can see that for each test case a
saturation point was reached. This saturation point reflects the
maximum numbers of requests the server could handle for the
given resource. Looking at the graphs, the saturation point can
be recognized by the point at which the server’s average re-
sponse time increases significantly, often times jumping from
a few milliseconds up to hundreds or thousands of millise-
conds. The response time corresponds to the time between
when the client sends the first byte of the request and receives
the first byte of the reply.
So, if we were to look at Yahoo (Figure 3), for instance, we
would notice that the server reaches its saturation point at
about the time when the client issues 36 requests per second
for uncompressed content. This figure falls slightly, to about
33 requests per second, when compressed content is re-
quested.

Table 2

Estimated saturation points for the Apache web

server based on repeated client requests for the indicated

document

WebSite UnCompressed Compressed

Google 215 105

Yahoo 36 33

AOL 27 25

EBay 16 15

Refer to Table 2 for a comparison of the estimated saturation
points for each test case. These estimates were obtained by
calculating the average number of connections per second
handled by the server using data available from the ben-
chmarking results. One interesting thing to note from the
graphs is that, aside from the Google page, the server main-
tained almost the same average reply rate for a page up until
the saturation point, regardless of whether the content was
being served compressed or uncompressed.
After the saturation point the numbers diverge slightly, as is
noticeable in the graphs. What this means is that the server
was able to serve almost the same number of requests per
second for both compressed and uncompressed documents.
The Google test case shows it is beneficial to impose a limit on
the minimum file size necessary to compress a document. Both
mod_gzip and IIS allow the site administrator to set a lower
and upper bound on the size of compressible resources. Thus
if the size of a resource falls outside of these bounds it will be
sent uncompressed.
For these tests all such bounds were disabled, which caused
all resources to be compressed regardless of their size. When
calculating results we will only look at those cases where the
demanded number of requests per second is less than or equal
to the saturation point. Not surprisingly, compression greatly
reduced the network bandwidth required for server replies.
The factor by which network bandwidth was reduced roughly
corresponds to the compression ratio of the document. Next I
have discussed the performance effects that on-the-fly com-
pression imposed on the server. To do so we will compare the

server’s average response time in serving the compressed and
uncompressed document. The findings are summarized in
Table 3.

Table 3

Average response time (in milliseconds) for the

Apache server to respond to requests for compressed and

uncompressed static

WebSite UnCompressed Compressed

Google 3.2 10.2

Yahoo 3.3 27.5

AOL 3.4 34.7

EBay 3.4 51.4

The results are not particularly surprising. We can see that the
size of a static document does not affect response time when it
is requested in an uncompressed form. In the case of compres-
sion, however, we can see that as the file size of the resource
increases so too does the average response time. We would
certainly expect to see such results because it takes a slightly
longer time to compress larger documents. Keep in mind that
the time to compress a document will likely be far smaller for
a faster, more powerful computer. The machine running as the
web server for these tests has a modest amount of computing
power, especially when compared to the speed of today’s av-
erage web server.

7 SUMMARY / SUGGESTIONS

If the server generates a large amount of dynamic content one
must consider whether the server can handle the additional
processing costs of on-the-fly compression while still main-
taining acceptable performance. Thus it must be determined
whether the price of a few extra CPU cycles per request is an
acceptable trade-off for reduced network bandwidth. Also,
compression currently comes at the price of cacheability.
Much Internet content is already compressed, such as GIF and
JPEG images and streaming audio and video. However, a
large portion of the Internet is text based and is currently be-
ing transferred uncompressed. As we have seen, HTTP com-
pression is an underutilized feature on the web today. This
despite the fact that support for compression is built into most
modern web browsers and servers. Furthermore, the fact that
most browsers running in the Windows environment perform
streaming decompression of gzipped content is beneficial be-
cause a client receiving a compressed HTML file can decom-
press the file as new packets of data arrive rather than having
to wait for the entire object to be retrieved. Our tests indicated
that 27% byte reductions are possible for the average web site,
proving the practicality of HTTP compression. However, in
order for HTTP compression to gain popularity a few things
need to occur.
First, the design of a new patent free algorithm that is tailored
specifically towards compressing web documents, such as
HTML and CSS, could be helpful. After all, gzip and deflate
are simply general purpose compression schemes and do not
take into account the content type of the input stream. There-
fore, an algorithm that, for instance, has a predefined library

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 6

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

of common HTML tags could provide a much higher com-
pression ratio than gzip or deflate.
Secondly, expanded support for compressed transfer coding is
essential. Currently, support for this feature is scarce in most
browsers, proxies and servers. As far as proxies are concerned,
Squid appears only to support compressed content coding, but
not transfer coding, in its current version. According to the
Squid development project web site [18] a beta version of a
patch was developed to extend Squid to handle transfer cod-
ing. However, the patch has not been updated recently and
the status of this particular project is listed as idle and in need
of developers. Also, in our research we found no evidence of
support for compressed transfer coding in Apache.
The most important thing in regards to HTTP compression, in
my opinion, is the need for expanded proxy support. As of
now compression comes at the price of uncacheability in most
instances. As we saw, outside of the latest version of Squid,
little proxy support exists for the Vary header. So, even
though a given resource may be compressible by a large fac-
tor, this effectiveness is negated if the server has to constantly
retransmit this compressed document to clients who should
have otherwise been served by a proxy cache.

REFERENCES

[1] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy. Potential Bene-

fits of Delta Encoding and Data Compression for HTTP.In Proceedings of the

ACM SIGCOMM '97 Symposium, Cannes, France, Sept 1997.

[2] B. Krishnamurthy and J. Rexford. Web Protocols and Practice. Addison-

Wesley, May 2001.

[3] H.F. Nielsen, J. Gettys, A. Baird-Smith, E.Prud'hommeaux, H. W. Lie, and C.

Lilley. Network Performance Effects of HTTP/1.1, CSS1, and PNG. In Pro-

ceedings of ACM SIGCOMM'97 Conference, Septem-

ber1997.http://www.w3.org/Protocols/HTTP/Performance/Pipeline.html

[4] UnxSoft Ltd. WebSwift: Real Time HTML Compres-

sion.http://www.unxsoft.com/webswift/. 2001.

[5] D. Mosberger and T. Jin. httperf: a Tootl for Measuring Web Server Perfor-

mance.http://www.hpl.hp.com/personal/David_Mosberger/httperf.html.

Jun 29, 1998.

[6] H.F. Nielsen. The Effect of HTML Compression on a LAN.

http://www.w3.org/Protocols/HTTP/Performance/Compression/LAN.ht

ml. Dec 6,2000.

[7] G. Goebel. Introduction / Lossless Data Compres-

sion.http://www.vectorsite.net/ttdcmp1.html.May 01, 2001.

[8] Google, Inc. The Google Search Engine.http://www.google.com/

[9] Yahoo! The Yahoo! Home Page.http://www.yahoo.com/

[10] America Online. The America OnlineHome Page. http://www.aol.com/.

[11] eBay. The eBay Home Page.http://www.ebay.com/. 2001.

[12] T.J. Midgley. Autobench.http://www.xenoclast.org/autobench/. Jun 27,

2001.

[13] Gzip manual page.http://www.linuxprinting.org/man/gzip.1.html. 2001.

[14] Packeteer,Inc.InternetApplication Acceleration using Pack-

eteer’sAppCeleraICX. http://www.packeteer.com/PDF_files/ appcele-

ra/icx/icx55_paper.pdf. 2001.

[15] Top9.com.Top99WebSites.http://www.top9.com/top99s/top99_web_sites.h

tml.Mar2001

[16] GNU Project. The wget home page.

http://www.gnu.org/software/wget/wget.html. Dec 11, 1999.

[17] Leknor.com. Code – gziped?http://leknor.com/code/gziped.php. 2001.

[18] S. R. van den Berg. Squid Development Projects.

http://devel.squidcache.org/projects.html. Jan 6, 2002.

